Balloons and Gas Laws

Thomas L. Morton
October 20, 2004
Introduction

What will happen to our balloon?

- It will rise
- It will expand while rising
- It will pop, and fall back to earth
- We will talk about the physics of each of these steps.
Topics of Discussion

- How do gases behave?
- Why does a helium balloon rise?
 - What is helium?
- Why does the balloon expand?
- How much can it lift?
- How fast does it go up?
- How far does it go up?
How do gases behave?

- Boyle’s Law – $PV = \text{const}$
- Charles’ Law – $V = \text{const} \times T$
- Avogadro’s Law – Equal volumes at the same temperature and pressure have the same number of molecules. $V = n \ V_{\text{standard}}$
Boyle’s Law

For a given mass, at constant temperature, the pressure times the volume is a constant.

\[p \ V = C \]
Charles and Gay-Lussac’s Law

For a given mass, at constant pressure, the volume is directly proportional to the temperature:

\[V = CT \]
What is the Temperature?

Volume doesn’t go to zero at 0° Celsius
Volume does go to zero at -273° Celsius
-273 is defined as Absolute Zero
We use a Temperature scale called Kelvin

º Celsius + 273 = º Kelvin
How do gases behave?

- Boyle’s Law – $PV = \text{const}$
- Charles’ Law – $V = \text{const} \times T$
- Avogadro’s Law – $V = n V_{\text{standard}}$
- Net result – $PV / nT = R$
- R is the gas constant
 - $R = 8.314 \text{ J} / \text{K mol}$
 - $R = 1.987 \text{ cal} / \text{K mol}$
 - $R = .08205 \text{ liter atm} / \text{K mol}$
What is n?

In a typical liter of air, there are about 2.7×10^{22} molecules.

Scientists use a different counting scale. A gram equivalent of a chemical is called a mole.

$1 \text{ mole} = 6.02 \times 10^{23} \text{ molecules/atoms}$
The Periodic Table of Elements

Metals

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Chemical Symbol</th>
<th>Chemical Name</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>HYDROGEN</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>LITHIUM</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>SODIUM</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>MAGNESIUM</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>ALUMINUM</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>SILICON</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>PHOSPHORUS</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>SULFUR</td>
<td>32</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>CHLORINE</td>
<td>35</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>ARGON</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>POTASSIUM</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>CALCIUM</td>
<td>40</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>SCANDIUM</td>
<td>45</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>TITANIUM</td>
<td>48</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>VANADIUM</td>
<td>51</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>CHROMIUM</td>
<td>52</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>MANGANESE</td>
<td>55</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>IRON</td>
<td>56</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>COBALT</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>NICKEL</td>
<td>59</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>COPPER</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>ZINC</td>
<td>65</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>GALLIUM</td>
<td>70</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>GERMANIUM</td>
<td>73</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>ARSENE</td>
<td>75</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>SELENIUM</td>
<td>78</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>BROMINE</td>
<td>80</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>KRYPTON</td>
<td>84</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>RUBIDIUM</td>
<td>85</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>STRONIUM</td>
<td>88</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>YTTRIUM</td>
<td>89</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>ZIRCONIUM</td>
<td>91</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>NIOBİUM</td>
<td>93</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>MOLİBIENUM</td>
<td>95</td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td>TECHNETIUM</td>
<td>98</td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>RUTENİUM</td>
<td>101</td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>RHODİUM</td>
<td>102</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>PŁATİNUM</td>
<td>106</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>ARGİUM</td>
<td>107</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>ÇİNAZİUM</td>
<td>112</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>İNDİUM</td>
<td>114</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>SİLİNIUM</td>
<td>118</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>ŞİMETİUM</td>
<td>121</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>TELLURIUM</td>
<td>128</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>IODİUM</td>
<td>127</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>XORİUM</td>
<td>131</td>
</tr>
</tbody>
</table>

Non-Metals

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Chemical Symbol</th>
<th>Chemical Name</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>C</td>
<td>CARBON</td>
<td>12</td>
</tr>
</tbody>
</table>

Key

- Solid at room temperature
- Liquid at room temperature
- Gas at room temperature
- Radioactive
- Artificially Made

*The atomic weights listed on this Table of Elements have been rounded to the nearest whole number. As a result, this chart actually displays the *mass number* of a specific isotope for each element. An element's complete, unrounded atomic weight can be found on the JPL Elemental web site: http://education.jpl.nasa.gov
Ideal Gas Law

Finally, we have $PV = nRT$

- P in atmospheres
- V in liters
- n in moles
- T in kelvins
- $R = 0.08205$ liter atm / K mol

Valid for moderate temperatures and pressures.

OK for conditions we will see
Why do Helium balloons float?

- Why do boats float?
Why do Helium balloons float?

- Helium balloons “float” in a sea of air.
- Helium weighs less than air.
- Displaces more dense air where balloon is.

Air is 78% Nitrogen, 21% Oxygen, and 1% Argon.

Molecular weight of air is
\[0.78 \times 28 + 0.21 \times 32 + 0.01 \times 40 = 28.96 \text{ g/mol}\]

“Molecular” weight of Helium is 4 g/mol.
Let’s use the ideal gas law

Suppose I have a balloon one foot in diameter
Volume = \(4\pi r^3/3 = 4\pi (15.24 \text{ cm})^3 / 3 = 14,800\text{ cm}^3 = 14.8 \text{ liters} \).

Weight of that air is:
\[14.8/(0.08205*298)*28.96 = 17.5 \text{ gm} \]

Weight of helium is:
\[14.8/(0.08205*298)*4 = 2.4 \text{ gm} \]

Lift is 17.5 – 2.4 = 15.1 gm.

Rises if balloon weight is less than 15.1 gm
What is the relevance to balloons?

- Tube demonstration
- Measure pressure in different sized balloons
- Recover balloon from freezer
- Lift equation is a little different
 - Use P_{internal} for the weight of balloon and Helium
 - Lift is a little less than previous slide
What happens as balloon rises?

- Pressure drops
- Temperature drops, then stays steady
- Consider balloon from a couple slides ago, at 10,000 feet high
 - $P = 700$ mBar = 0.69 atmospheres
 - $T = 0^\circ$ C = 273 kelvins
 - $n = 0.61$ moles
 - $V = nRT / P = 19.6$ liters
 - $R = 3\sqrt{3*V/(4\pi)} = 16.7$ cm > 15.2 cm
What happens as balloon rises? (2)

§ Consider the same balloon, now at 50,000 feet
 u $P = 120 \text{ mBar} = 0.12 \text{ atmospheres}$
 u $T = -60^\circ \text{ C} = 213 \text{ kelvins}$
 u $n = 0.61 \text{ moles}$
 u $V = nRT / P = 88.2 \text{ liters}$
 u $R = \sqrt[3]{\frac{3V}{4\pi}} = 27.6 \text{ cm} \approx 2 \times 15.2 \text{ cm}$
What happens as balloon rises? (3)

Consider the same balloon, now at 100,000 feet

- $P = 10 \text{ mBar} = 0.01 \text{ atmospheres}$
- $T = -50^\circ \text{ C} = 223 \text{ kelvins}$
- $n = 0.61 \text{ moles}$
- $V = nRT / P = 1160 \text{ liters}$
- $R = \frac{3\sqrt{3*V/(4\pi)}}{4} = 65.1 \text{ cm} \approx 4 \times 15.2 \text{ cm}$
- Balloon stretched to 18 x original surface area
- Balloon thickness starts at 0.28 mm, goes to 0.015 mm
Activities

- Measure balloon size, lift, and rise rate:
 - Use string to measure radii.
 - Use scale to measure weight of balloon, and lift.
 - Use stopwatch to measure time to rise from floor to ceiling.
- Use vacuum tank to measure balloon size as a function of pressure.