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Explorers Computer Technology Post 631

April 3, 2008

by  Don  Braun

(last modified on 4/14/2008)

Acoustic

Signal  Processing

1. Title:   This lesson will involve learning about acoustic signals and how computers
can record, playback, and manipulate them.

2. “Acoustic” signals (from the Greek word for something audible) are otherwise
known as “sound” (from the Latin word for hearing).
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What is sound?

A sound is the compression and expansion of a medium such as a gas, a
liquid, or a solid, that propagates (that is, travels) through that medium.

The medium is the substance or material that carries the sound wave.

1. Use the free audio editor and recorder program “Audacity”  (downloaded
from  http://audacity.sourceforge.net)  to experiment with sound.

2. Understand basic concepts and terminology of acoustics.

3. Learn or review a little math and use it to describe sound.

Goals of this lesson

Download this PowerPoint presentation & notes from Web
http://explorersposts.grc.nasa.gov/post631/2007-2008/

1. “Goals of this lesson – 1. Audacity”:   Hands-on demos and exercises at this Explorers meeting will
use the free software  “Audacity” version 1.2.6.

2. “Goals of this lesson – 2. Concepts and terminology”:   The basic concepts and terminology of
acoustics explained in this presentation include sound, medium, traveling or standing waves,
longitudinal or transverse or surface waves, energy, power, radians, sine, cosine, amplitude,
frequency, period, wavelength, speed, phase, exponentials, logarithms, sound intensity, decibels,
octave, semitone, superposition of waves and beats, interference nodal lines and antinodal lines,
spectrum, fast Fourier transform (FFT), anatomy of the human ear, anatomy of the human vocal
tract, and phonetic speech synthesis and recognition.

3. “Goals of this lesson – 3. Math”:   On your applications for this Explorer program, a number of you
said you hoped the program would improve your math skills.  Also, on your weekly evaluations of
the meetings some of you said certain presentations spent too much time explaining things you
already knew;  however, those topics were not well known by some of the other Explorers.  Some
Explorers asked for more variety in the topics.  I hope this lesson will address those concerns.  This
presentation is an overview of a variety of subjects, and each of you will probably find some topics
in this presentation to be unfamiliar.  We will not have time to investigate any of the subjects in
great detail.  If some unfamiliar subjects seem hard to follow, don’t be too concerned;  it is
generally sufficient for you to understand the basic principles of each topic.  I will present some
mathematical details for those who want to understand them.  If you’re not that interested in the
math, please be patient.

4. “Download this presentation”:   Because there is more information on the slides of this presentation
than we will have time to cover thoroughly, printed copies of the slides will be handed out so you
can refer to them later if you want.  The PowerPoint presentation file  “AcousticSignalProc.ppt”,
which includes these detailed notes for the slides,  will also be posted on the Explorers Web site
https://explorersposts.grc.nasa.gov/post631/2007-2008/.

5. I’d like this discussion to be interactive, so please ask questions or make helpful comments at any
time.  I’ll try to present a lot of useful information in a fairly short time and to make it as interesting
as I can, so please give me your undivided attention.  Don’t worry, there will be no exam at the
end, so just keep your mind alert and enjoy the experience.

6. “What is sound?”:   I want an explanatory physical definition, not just something like  “an acoustic
signal”,  “something to listen to”,  or  “something to put on an iPod”.   The “medium” is the “stuff”
that sound passes through.
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     741 mph  ≈   1,087 feet /s  ≈     331 m/s   in dry air at sea level at 32°F;
     770 mph  ≈   1,130 feet /s  ≈     344 m/s   in dry air at sea level at 70°F;
  3,349 mph  ≈   4,911 feet /s  ≈  1,497 m/s   in pure water at 77°F;
11,400 mph  ≈ 16,700 feet /s  ≈  5,100 m/s   in steel.

Other things being equal, the speed of sound (called “Mach 1”) increases
as the density of the medium decreases and as the stiffness of the

chemical bonds between particles in the medium increases.
Pressure in the medium hardly influences the speed of sound.

Would an astronaut on a space walk hear a bell
if she or he hit it with a hammer?

No!  Although the bell would vibrate, there is no medium like air in the
vacuum of space to propagate a sound wave to the astronaut’s ears.

Why do you see lightning before you hear its thunder?
The speed of light is   c  =  299,792,458 m/s  ≈  186,282 miles / second,

so you see a lightning bolt from one mile away after only
(1 mile) / c  ≈  5.7 µs  but you hear it after  (5280 ft) / (1130 ft / s)  ≈  4.7 s .

Light travels almost one million times as fast as sound in air.

How fast does sound travel?

1. “How fast does sound travel”:   The transmission of sound can be explained using
a toy model consisting of an array of balls interconnected by springs as in the
upper left  figure on slide #5.  For a real material the balls represent molecules and
the springs represent the chemical bonds between them.  Sound passes through the
model by compressing and expanding the springs, transmitting energy to
neighboring balls, which transmit energy to their springs, and so on. The speed of
sound through the model depends on the stiffness of the springs:  stiffer springs
transmit energy more quickly. All other things being equal, sound will travel more
slowly in denser materials, and faster in stiffer ones. (The preceding text of this
note is from the Web page  http://en.wikipedia.org/wiki/Speed_of_sound .)  For
example, sound moves slower through the denser (higher pressure) cold air at 32°F
than it does through the less dense (lower pressure) warm air at 70°F .  Although
material density increases from air to water to steel, neither the density rule nor the
stiffness rule stated on this slide should be applied because different states of
matter are involved (i.e., a gas, a liquid, and a solid), which does not satisfy the
requirement of “other things being equal.”

2. “Why do you see lightning before you hear its thunder?”:   Light travels about
c / v  ≈  (300 · 106 m/s) / (344 m/s)  ≈  106   times as fast as sound in air.

3. “Astronaut on a space walk hits a bell”:   A sound wave cannot even exist, let
alone travel, if there is no medium to compress and expand.
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A traveling wave (like sound in an
open area) is a repeating disturbance
that moves through a medium from

one location to another.

A standing wave (like a vibrating
string fixed at both ends) is a

disturbance that repeats without
propagating through the medium.

<http://www.glenbrook.k12.il.us/gbssci/phys/
mmedia/waves/harm4.html>

<http://www.glenbrook.k12.il.us/gbssci/phys/
Class/sound/u11l1a.html>

<http://www.ncat.edu/~gpii/>

Try the following Java applet for a standing wave
in a wind instrument like a pipe organ:

http://www.walter-fendt.de/ph11e/stlwaves.htm

There are 2 categories of waves based on motion of the waves:
traveling and standing

<http://www.ncat.edu/~gpii/>

1. The upper left animated gif figure shows a traveling transverse sinusoidal wave (like a slinky or
heavy stretchable cord under tension, whose left end is moved up and down, and whose right end is
free).  Traveling transverse waves will be described on slide #6.  Click on this Web hyperlink to
also see animated gif pictures of a traveling longitudinal wave of particles, a standing transverse
sinusoidal wave (similar to the traveling transverse sinusoidal wave shown here in the upper left),
and the standing longitudinal wave of particles (as shown in the lower right figure on this slide).

2. The lower left animated gif figure shows a traveling longitudinal wave (like sound emanating from
a tuning fork in an open area so there are no echoes) showing compression and expansion of the
medium (like air).  This diagram clearly shows the wave motion from left to right, but it does not
clearly show that individual particles of the medium only move right and then back left the same
very small distance rather than moving all the way to the right along with the wave.  See the Web
hyperlink in the upper left quadrant as mentioned in item #1 just above to more clearly see the
motion of particles in the medium carrying a traveling longitudinal wave.

3. The upper right animated gif shows a standing transverse sinusoidal wave (like a violin string
attached at both ends). The medium particle at any “node” does not move at all.  The medium
particle at an “antinode” moves up and down a maximum amount.

4. The lower right animated gif shows a standing longitudinal air pressure wave (like sound
resonating in a tube that is closed at both ends).  The air (medium) particles at a “node” do not
move at all, and this example shows 7 equally-spaced nodes (including a node at each end of the
tube where the air particles cannot move against the end cap).  The air particles at an “antinode”
move left and right a maximum amount, and this example shows 6 equally-spaced antinodes, with
one antinode halfway between each pair of adjacent nodes.  Every 10th short vertical line is drawn
bold just to help the viewer see that individual lines move left and right only a short distance,
except at a node where there is no motion at all.  This is a standing longitudinal wave (in contrast to
a traveling longitudinal wave as shown in the similar animated gif in the on lower left figure on the
next slide) because each compression seems to move a fairly short distance left and right rather
than moving all the way along the tube.

5. Click on the Web hyperlink near the lower right to see an excellent interactive demo of a standing
longitudinal wave (like sound in an organ pipe with both ends open, with one end closed, or even a
pipe with both ends closed)!
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Particles of a medium do not travel long distances along with a sound wave, but
energy does.  Particles move forward (parallel to the direction of propagation) a
tiny distance, pushing on neighboring particles of the medium and transferring
energy to them, and then return close to their original position, so sound waves
are called “longitudinal”.  Push the end of a slinky to make a longitudinal wave.

Traveling longitudinal wave on a slinky
<http://www.glenbrook.k12.il.us/gbssci/phys/mmedia/waves/lw.html>

In physics, a force is an action that can cause an object to accelerate (speed up),
work is a force acting over a distance,
energy is the ability to do work, and

power is the rate at which energy is delivered per unit time.

What actually moves through the medium as sound travels?

What is energy?

Traveling longitudinal sound pressure wave
<http://www.ncat.edu/~gpii/>

1. “What actually moves through the medium as sound travels?”:   The particles of the medium do not travel
along with the wave.  Instead, the wave is a disturbance that passes through the medium always moving away
from the source, but that wave merely moves the particles a little and then lets them go back to their “rest”
positions.  In the case of sound, the particles move forward (in the direction of wave propagation) and
backward, so sound waves are called “longitudinal”, which means “running lengthwise”.  Only energy (not
any individual particle) actually travels with the wave from starting point to ending point.  “Sound” relates to
energy traveling through a medium.

2. In the lower left animated gif figure, short vertical lines close together represent compressed (high pressure)
air.  Lines far apart represent rarified (low pressure) air.  Every 10th line is drawn bold just to help the viewer
see that individual lines move left and right a short distance, but do not follow the wave all the way toward the
right.  All lines move the same amount, but slightly “out of phase” with adjacent lines.  However, high density
concentrations of lines (representing compressed air) appear to travel all the way from left to right.  Every 10th

line is drawn bold just to help the viewer see that individual lines move left and right only a short distance, but
those bold lines do not follow the wave all the way toward the right.  All lines move the same amount, but
slightly “out of phase” with adjacent lines.  However, it appears that each high density concentration of lines
(representing compressed air) travels all the way from left to right as required for a traveling wave, in contrast
to the similar animated figure of a standing longitudinal wave in the lower right on the previous slide.

3. “Force, work, energy, power”:  As an example of the effect of a force acting on an object, consider pushing
constantly with a force of  F = 1 pound  on a hockey puck that is initially at rest and weighs about 1/3 pound
(use  m = 0.322 pound / g ,  where  g  is the acceleration of gravity).  At the end of  t = 1 second,  the hockey
puck will have moved across the (frictionless) ice rink a distance of  x  =  50 feet,  the final speed of the puck
will be  v = 100 feet/second,  its constant acceleration will have been  a = 100 (feet/second)/second
throughout the  t = 1 second  interval, the work  (W)  that your pushing did on the puck will be equal to its
final energy  (E)  where  W = E = 50 foot pounds,  and the power you imparted to the puck will have been  P =
50 foot pounds / second  throughout the  t = 1 second  interval.  The following calculations show how to find
those results, using standard formulas from elementary physics.
F  =  1 lb;
g  =  32.2 ft / s2  =  (acceleration of gravity);
m  =  (0.322 lb) / g  =  0.322 lb / (32.2 ft / s2)  =  0.01 lb s2 / ft;
t  =  1 s;
a  =  F / m  =  (1 lb) / (0.01 lb s2 / ft)  =  100 ft / s2;
v  =  a t  =  (100 ft / s2) (1 s)  =  100 ft/s;
x  =  a t 2 / 2  =  (100 ft/s2) (1 s)2 / 2  =  50 ft;
W  =  F x  =  (1 lb) (50 ft)  =  50 ft lb;
E  =  m v 2 / 2  =  (0.01 lb s2 / ft) (100 ft/s)2 / 2  =  50 ft lb  =  W ;
P  =  E / t  =  (50 ft lb) / (1 s)  =  50 ft lb / s .
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For a “traveling transverse wave”, particles of the medium move (back and
forth) in a direction perpendicular to the direction in which the wave travels,
like people in a stadium “doing the wave”, where the crowd is the medium.

Traveling
transverse

 wave

Traveling surface wave
(also called a circular wave)

A wave on the ocean surface is called a “traveling surface wave” in which particles
of the medium move in vertical circles, but the wave propagates horizontally.

<http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html>

<http://en.wikipedia.org/wiki/Transverse_wave>

<http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html>

Try the interactive demo of a traveling transverse wave at
http://www2.biglobe.ne.jp/~norimari/science/JavaApp/nami1/e-nami.html .

Other categories of traveling waves based on particle motion

1. The upper left animated file  TransversePlaneWave.gif  is the file
http://en.wikipedia.org/wiki/Image:Onde_cisaillement_impulsion_1d_30_petit.gif
from the Web page  http://en.wikipedia.org/wiki/Transverse_wave .

2. The upper right animated file with dots moving up and down to create a transverse
wave that travels from left to right is from the Web page
http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html .

3. Another example of a traveling transverse wave would be to stretch a slinky
horizontally, and then to quickly jerk the left end up and down to send a pulse
from left to right along the slinky, as shown in the excellent interactive demo at the
Web hyperlink  http://www2.biglobe.ne.jp/~norimari/science/JavaApp/nami1/e-
nami.html .   That demo allows interactively changing the stiffness of springs
(simulating bonds) between balls (simulating particles of the medium) with
varying mass per ball (thus varying the density of the medium).

4. The lower left animated file with dots near the top moving clockwise in small
circles to create a surface wave that travels from left to right is also from the Web
page  http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html .   Dots
near the top move in larger circles than dots lower down, as shown by the two blue
dots.
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Traveling
transverse

 wave

<http://www.kettering.edu/~drussell/Demos/waves-intro/waves-intro.html>

Traveling
transverse

 wave

Traveling
longitudinal

wave
(like sound)

Identify each wave as longitudinal, transverse, or surface

1. For the traveling transverse wave at the top, the particles (individuals “doing the
wave” in a stadium) move perpendicular (up and down) to the direction of wave
propagation (left to right) and then those particles return to their initial (rest)
positions.

2. For the traveling longitudinal wave in the middle, the particles (air molecules)
move parallel to the direction of wave propagation (left to right) and then those
particles return to their initial (rest) positions.

3. For the traveling transverse wave at the bottom, the particles (bits of a stretched
piece of elastic or slinky) move perpendicular (up and down) to the direction of
wave propagation (left to right) and then those particles return to their initial (rest)
positions.
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Analog to
Digital

Converter
(ADC)

Microphone
Sound source (e.g.,
music or speech)

How do computers record and play back sound?

1. Girl and her “Air pressure” plot:   The girl’s speaking or talking (with her vocal
tract including the vocal cords, throat, mouth, and nasal cavity; or else perhaps a
musical instrument, a clap, or another sound source) causes the air pressure to
fluctuate with time.  For example, when either one of the two tines of a tuning fork
moves toward the surrounding air, it locally compresses that air and causes a pulse
of increased air pressure (above the mean ambient air pressure) to propagate away
from that tine.  In contrast, when the tine of a tuning fork moves away from the
surrounding air, it locally expands the air and causes a pulse of decreased air
pressure (below the mean ambient air pressure) to propagate away from the tine.
The air pressure waveform is a continuous function of time;  that is, at every
instant of time the air pressure at any given location has some value.  The picture
of the girl is from Microsoft Office 2003 Clip Art.

2. Microphone and its “Voltage” plot:   The microphone converts the pressure at any
instant in time to a voltage proportional to that pressure, thus producing a
continuous voltage waveform that is analogous to the continuous air pressure
waveform measured at the location of the microphone.

3. ADC and its waveform:   The ADC digitizes the voltage waveform by sampling it
at equally-spaced discrete time slices and quantizing the value of the waveform at
each time slice to an integer value as explained on the next slide.
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  0,  0, -1, -2, -4,  8, 11, -3,    -5, -2,  0,  1,  0,  1,  4,  3,

 -1,  0,  0, -4, -2,  1,  3,  3,     3,  1, -2, -3, -1,  1,  1,  0

Quantization errors introduced by digitizing an analog signal

1. Observe the quantization errors as the white square samples shown on this graph
approximate points on the red continuous waveform.  Those small errors in the
vertical positions of the white squares compared with the red curve are caused
because each digitized sample is taken at a time instant corresponding to a vertical
grid line, and its value is rounded by the ADC to the quantized sample value
corresponding to the nearest horizontal grid line crossing the red continuous
waveform at that time.

2. The 32 sample values are represented by the integers
“0,  0,  –1,  –2,  –4,  8,  11,  –3,  –5,  –2,  …,  1,  1,  0”
shown in two rows at the bottom of this slide, where each of the four groups of 8
samples is between two major vertical grid lines on the graph.  Those 32 samples
would be produced by a signed 5-bit ADC whose sample values must be in the
range
–16  =  – 24  ≤  sample  ≤  24 – 1  =  15 .
By comparison, audio compact disks (CDs) typically use 16 bits/sample, for a
maximum range of
–32,768  =  – 215  ≤  (ADC sample)  ≤  215 – 1  =  32,767 .
Professional audio recording equipment may reduce quantization errors by using
an ADC that digitizes 24 bits/sample, for a maximum range of
–2,147,483,648  =  – 231  ≤  (ADC sample)  ≤ 231 – 1  =  2,147,483,647 .
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Analog to
Digital

Converter
(ADC)

Digital to
Analog

Converter
(DAC)

Store digitized
numbers on a
computer disk

Microphone

Speaker or
earphone

Sound source (e.g.,
music or speech)

How do computers record and play back sound?

1. Disk and its “Sample value” plot:   The 32 discrete samples (i.e., the integers)
produced by the ADC can be stored in a file on a computer disk.  Reading that file
later recovers those 32 samples, but the exact values of the original waveform at
the sample times have been rounded to integers (probably introducing quantization
errors), and no information is available for what the original continuous waveform
did between the samples (possibly introducing what are called “aliasing errors” if
the original continuous signal contained energy at frequencies greater than the
Nyquist frequency, which is half the sampling frequency).  For brevity, no
technical explanation of aliasing will be given here.

2. If the digitized numbers from the ADC are encoded or compressed before
recording the data on disk (for example, to reduce required disk space), the data
read back from the disk should be decoded or uncompressed to produce sampled
data representing a signal similar to the original sample values from the ADC.

3. DAC and its output “Voltage” plot:   The DAC converts the numbers read from the
disk into voltages.  Typically, the output voltage is held constant by the DAC
during the brief time interval between one sample and the next one as shown on
this graph.

4. Speaker/earphone and its “Air pressure” plot:   The DAC output voltages (perhaps
after some electronic filtering to produce a smoother waveform and a more
pleasant sound without clicks) drives a speaker or earphone.  That produces an air
pressure waveform:  compressing air to increase pressure when the speaker cone
moves outward, and expanding air to decrease pressure when the speaker cone
moves inward.
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Animation  movie of a sine wave (sinusoidal wave) y = s.mov

The radian measure of an angle is
the length of the circular arc
subtended (included) by that angle
divided by the radius of the circle.

The y-coordinate of the point on the
unit circle determined by a central
angle (in standard position) of  θ
radians is the sine,  denoted  sin(θ) .

The x-coordinate of that point is the
cosine,  denoted by  cos(θ) .

To the left of the y-axis, you see a
unit circle being swept out, with the
radian measure of the angle (arc
length) shown in blue, and the sine
of that angle (the y-coordinate)
shown in red.  To the right of the y-
axis, you see the points of the graph
of
y = sin(θ)  drawn in black.  The angle
θ is shown in blue and the value of
sin(θ)  is shown in red.

<http://www.wku.edu/~tom.richmond/Sine.html>

<http://www.rkm.com.au/ANIMATIONS/
animation-sine-wave.html>

θ

y

Define sine & cosine functions of angles measured in radians

This slide explains two new subjects that should be understood to use Audacity:
(a)  how to measure angles in radians (where  2 π  radians is a full circular arc)
instead of degrees (where 360 degrees is a full circular arc);
(b)  definitions of the sine function and cosine function, which are very important
in trigonometry.

To activate the excellent upper right animation (which was copied from
http://www.rkm.com/au/ANIMATIONS/animation-sine-wave.html)  during the
presentation of this slide in PowerPoint:

1. press the “ESCape” key to exit “slide show mode” and to enter PowerPoint  “edit”
mode for this slide;

2. double-click the filename  “Animation  movie of a sine wave (sinusoidal wave) y
= s.mov”  near the upper right corner of this slide, just under the title  “Define sine
& … radians”  to start the QuickTime movie;

3. after the movie plays, exit the QuickTime Player to return to the PowerPoint
“edit’  mode for this slide;

4. finally, continue presenting the slide show from this slide by typing Shift+F5  (that
is, while holding down the Shift key, press the function key F5).

That method will use QuickTime to show the movie in a window that can be
maximized to fill the screen.

Alternatively, click on the hyperlink
“http://www.rkm.com.au/ANIMATIONS/animation-sine-wave.html”  while in
PowerPoint’s presentation mode to see the entire Web page (including that movie)
in your Internet browser.
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<http://en.wikipedia.org/wiki/Sine_wave>

The oscillating height of an undamped spring-mass
system around the equilibrium is a sine wave.

Parameters of the temporal sine wave (or sinusoidal function of time)

y    =   a  sin (ω t + β )  =  a  sin (2 π f t + β )  = a  sin (2 π t / T + β )    are

a   =   amplitude   =   peak deviation from the center at zero,
ω  =   angular frequency typically measured in  radians/second,
f    =  ω / (2 π)  =  angular frequency typically in  cycles/second,
T   =   1 / f    =   period typically measured in  seconds,     and
β   =   initial  (at time  t = 0)  phase angle  in radians,    with the variable
t    =   time typically measured in seconds.

2 a
a

β T / (2π) = β /ω
t = 0

T = 1/f = 2π /ω

T = 1/f = 2π /ω

t

y

See a helpful interactive demo of frequency, wavelength, and phase of a sinusoidal wave at
http://id.mind.net/~zona/mstm/physics/waves/introduction/introductionWaves.html .

crest

trough

Parameters of a temporal sine wave

To see an excellent interactive demo of frequency, wavelength, and phase of a
sinusoidal wave, click on the Web hyperlink at the bottom of this slide!
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a  =  log10 x     means     10 
a  =  x

where     0  <  x  <  ∞     and     − ∞  <  a  <  ∞ .

The notation  “ log10 x ”  is read as  “ log base 10 of  x ”  or  “ common log of  x ” .

Therefore,    a  =  log10 (10 
a

 )    and    10
(

 
log10 x)

  =  x ;

that is, 10 must be raised to the exponent   log10 x   to calculate  x .

To remember this, memorize the mnemonic:    “A logarithm is an exponent .”

The common logarithm is the inverse of the power function raising 10 to an exponent :

10 
aa = 3 10 

3 = 1000 log10 x
log10 1000

=  3 x = 1000

What is a  “common logarithm”  (which is also called
a  “base 10 log”  and is denoted by  “log10”) ?

The Audacity program uses logarithms to scale the axes of graphs and to compute
units called decibels that are commonly used to express the intensity of sound.

1. For any given positive value of  x,  the base “10” must be raised to the exponent
“log10(x)”  (which is called  a  on this slide) to calculate  x .

2. The statement  “a = log10(x)  means  10a = x ”  defines a “common logarithm” or
“base 10 log”.

3. In the sentence beginning with the word “Therefore”, the equation  “a =
log10(10a)”  follows by using  “10a = x”   from the sentence just above it to
substitute for  x  in the equation  “a = log10(x)”  in that preceding sentence.
Likewise, the equation  “10^(log10(x)) = x ”  follows by using “a = log10(x)”  from
the sentence just above it to substitute for  a  in the equation  “10a = x ”  in that
preceding sentence.

4. In the diagram at the bottom of this slide, the  “10a”   box at the lower left takes
the input value  a = 3  and calculates the output value  103 = 1000.   However, the
“log10(x)”   box at the lower right takes the input value  x = 1000  and calculates
the output value  log10(1000) = 3.   Thus, those two boxes compute inverse
functions;  that is, each box undoes the calculation done by the other box.
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Example numeric evaluations of the common logarithm

10 
a  =  x a  =  log10 x

1 0

2 0.30103

5 0.69897

10 1

20 1.30103

50 1.69897

100 2

200 2.30103

500 2.69897

1000 3

10 
a  =  x a  =  log10 x

   1 0

      1/2  =  0.500 − 0.30103

      1/5  =  0.200 − 0.69897

    1/10  =  0.100 −1

    1/20  =  0.050 − 1.30103

    1/50  =  0.020 − 1.69897

  1/100  =  0.010 −2

  1/200  =  0.050 − 2.30103

  1/500  =  0.020 − 2.69897

1/1000  =  0.001 − 3

Use column headings  “ 10 
a

 ”  and  “ a ”  for a table of exponentials, or
use column headings  “ x ”  and  “ log10 x ”  for a table of logarithms.

1. Comparing the two columns of this table shows that   log10(1/x) = – log10(x)  for
these examples.  This is true in general for any positive value of  x > 0 .

2. The left side of this slide shows that while the values of  10a = x  increase over the
large range from  1  to  1000,  the corresponding values of  a = log10 x  increase
over the much smaller range from  0  to  3.

3. The right side of this slide shows that while the values of  10a = x  decrease over
the small range from  1  to  1/1000,  the corresponding values of  a = log10 x
decrease over the much larger range from  0  to  –3.
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Plots of   log10 x   versus   x   with linear axes
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1. The part of the function  log10(x)  shown in the upper graph for  0.1 < x < 10  is
also shown at the leftmost 1/10 of the lower graph, with rescaled axes.

2. The lower graph shows the part of the function  log10(x)  for  0.001 < x < 1000 .
3. The blue curve representing the function  log10(x)  approaches negative infinity as

x  decreases toward zero.
4. The values in the tables of the previous slide are included on these two graphs.
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log2(1/4) = –2 octaves, so slope thru P1=(3, 4) and P2=(6, 1) is
log2(y2 / y1) / (x2 – x1)  =  (–2 octaves) / (6 – 3) = – 2 / 3 octave.

The slope through points P1=(1, 2) and  P2=(2, 0.5)  is
log2(y2 / y1) / log2(x2 / x1) =  (–2 oct.) / (1 oct.) = – 2 octave/octave.

Plots of the same data with linear, semilog, and log-log axes

1. The same data values are used on each of the 4 plots.
2. The 5 peaks marked by green squares are at coordinates  (1.5, 8),  (3, 4),  (4.5, 2),  (6, 1),

(7.5, 1/2).   Those x coordinates are linearly spaced at identical intervals of 1.5 between
consecutive peaks.  Those  y  coordinates are geometrically spaced, with the  y  coordinate
of each peak being  1/2  of the  y  value of the preceding peak.  Therefore, the 5 green
square peaks lie along a straight line in the lower-left (log y axis versus linear x axis) plot.

3. The other 5 peaks marked by red circles are at coordinates  (1/2, 8),  (1, 2),  (2, 1/2),  (4,
1/8),  (8, 1/32).   Those x coordinates are geometrically spaced, where the  x  coordinate of
each peak is 2 times the  x  coordinate of the preceding peak.  Those  y  coordinates are
also geometrically spaced, with the  y  coordinate of each peak being  1/4  of the  y
coordinate of the preceding peak.  Therefore, the 5 red circle peaks lie along a straight line
in the lower-right (log y axis versus log x axis) plot.

4. The upper-left (linear y versus linear x) plot is called a “linear” graph.
5. The lower-left (log y versus linear x) plot is the most common kind of “semilog” graph,

with “log-linear” axes.
6. Increasing any positive number by  “n  octaves”  for any integer  n  means multiplying that

number by  2n .   For example, increasing the frequency of a musical note from  110 Hz
(which is called the note A2)  by 3 octaves yields the frequency  23 (110 Hz) = 880 Hz
(which is called the note A5).   Similar to the base 10 logarithms already discussed, the
base 2 logarithm of any positive number  x  is denoted by  log2(x) = a  such that  x = 2a .
Using a theorem about logarithms similar to one on the next slide,  log2(x2 / x1) = log2(x2)
– log2(x1) = b = (the number of octaves that  x1  must be raised to equal  x2)  because   x2 /
x1 = 2b  and so  x2 = 2b x1 .

7. The upper-right (linear y versus log x) plot is an alternate kind of “semilog” graph, with
“linear-log” axes.

8. The lower-right (log y versus log x) plot is called a “log” graph, with “log-log” axes.
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Basic properties of powers of 10 from algebra include
10a 10b  =  10a

 
+b    and    10a / 10b  =  10a

 
−b    and    (10a

 )b  =  10(a
 
b)

for any real values    − ∞  <  a  <  ∞    and    − ∞  <  b  <  ∞ .

The 3 corresponding properties of common logarithms follow, using the definitions
x  =  10a    and    y  =  10b ,          so          log10 x  =  a    and    log10 y  =  b

where     0  <  x  <  ∞ ,     0  <  y  <  ∞ ,     − ∞  <  a  <  ∞ ,     and     − ∞  <  b  <  ∞ .

Theorem:    log10 (x y)   =   log10 x  +  log10 y .
Proof:          log10 (x y)   =   log10 (10a 10b)   =   log10 (10a

 
+b)   =   a + b   =   log10 x   +   log10 y .

Theorem:    log10 (x / y)   =   log10 x  −  log10 y .
Proof:          log10 (x / y)   =   log10 (10a / 10b)   =   log10 (10a

 
−b)   =   a − b   =   log10 x   −   log10 y .

Theorem:    log10 (x 
b)   =   b   log10 x .

Proof:          log10 (x 
b)   =   log10 ((10a)b)   =   log10 (10 

(a
 
 b))   =   a b   =   b a   =   b   log10 x .

Examples with  a = 5  and b = 2:
105 102   =   (10 · 10 · 10 · 10 · 10)  (10 · 10)   =   107   =   105+2 ;

105 / 102   =   (10 · 10 · 10 · 10 · 10)  /  (10 · 10)   =   103   =   105−2 ;
(105)2   =   (10 · 10 · 10 · 10 · 10)  (10 · 10 · 10 · 10 · 10)   =   1010   =   10(5 · 2) .

Basic properties of powers of 10 and of common logarithms

1. The 1st theorem   “log10(x y)  =  log10(x) + log10(y)”   can be remembered as  “the
log of a product equals the sum of the logs”.  Essentially, logs convert
multiplication into the “simpler” operation of addition.

2. The 2nd theorem   “log10(x / y)  =  log10(x) – log10(y)”   can be remembered as  “the
log of a quotient equals the difference of the logs”.  Essentially, logs convert
division into the “simpler” operation of subtraction.

3. The 3rd theorem   “log10(x b)  =  b  log10(x)”   can be remembered as  “the log of a
power equals the exponent times the log”.   Essentially, logs convert a power (that
is, raising a base to an exponent) into the “simpler” operation of multiplication.
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Measure sound pressure amplitude or intensity in decibels
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1. Equations #1, #2, and #3:    A sound generated in an open space expands as a spherical
wavefront whose total power is constant over time as its area   4 π r2  =  4 π (v t)2

increases.
2. Equations #3, #4, and #7:   The sound power  P(r)  and the maximum pressure amplitude

squared  a2(r)  sensed by the microphone are both inversely proportional to the square of
its distance  (r2)  from the source, and both are directly proportional to the given cross
sectional area  A  of the microphone’s diaphragm (or the area of the eardrum if a human
ear senses the sound).   The intensity  I(r)  of the sound waveform is inversely
proportional to the square of its distance  (r2)  from the source, but  I(r)  is a property of
the sound itself at that location independent of what sensor is used to measure the sound.
That is, for given values of  Psrc  and  r,  intensity  I(r)  does not depend on the cross
sectional area  A  of the microphone’s diaphragm, whereas both  P(r)  and  a2(r)  are
proportional to the area  A.  The symbol  “∝”  in equation #4 means “is proportional to”,
so there is a constant  b  (independent of  Psrc  and  r  and  A)  such that  P(r)  =  b a2(r).

3. Equation #6:   The reference “threshold of hearing (TOH)” intensity level  ITOH = 10–12

W/m2  is considered the lowest intensity sound a person with “normal” hearing can hear.
4. Equation #7:   Throughout this slide, assume the microphone’s diaphragm of area  A

(measured in meter2)  is located at any particular given distance  r  (in meters)  from the
sound source, which emanates any particular given power  Psrc  (in watts).   The intensity
I(r)  (in  watts / meter2)  and  IdB(r)  (in dimensionless decibels)  at distance  r  are constant
for any given sound source, independent of area  A .   However, the sensed sound power
P(r) = A I(r)  (in watts)  and the sensed sound pressure maximum amplitude squared  a2(r)
(in SI units of  (newtons / meter2)2 = (kg / (m s2))2,  or else in American units of  (pounds /
inch2)2 = psi2)  for the sound wave at distance  r  are both inversely proportional to the
diaphragm area  A,  and both  P(r)  and a2(r) are inversely proportional to the squared
distance  (r2)  from the sound source. The reference power PTOH = A ITOH  and the
corresponding reference amplitude squared aTOH

2  are each proportional to the diaphragm
area  A,  and they represent the threshold of hearing (TOH) for a “normal” human.   The
last  “=”  of equation #7 uses the fact that
P(r) / PTOH  =  a2(r) / aTOH

2   =  (a(r) / aTOH)2

because power is proportional to pressure amplitude squared, and so
10 log10 (P(r) / PTOH)  =  10 log10 (a(r) / aTOH)2  = 20 log10 (a(r) / aTOH)
where the last “=” just above applies a property of logarithms from the previous slide.
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Source Intensity  ( I )
Decibel
intensity

level

Multiple
of TOH

intensity
Threshold of Hearing (TOH) I TOH = 10−12 W/m2 0 dB 100

Rustling leaves 10−11 W/m2 10 dB 101

Whisper 10−10 W/m2 20 dB 102

Normal conversation 10−6 W/m2 60 dB 106

Busy street traffic 10−5 W/m2 70 dB 107

Vacuum cleaner 10−4 W/m2 80 dB 108

Large orchestra 6.3*10−3 W/m2 98 dB 109.8

iPod at maximum volume level 10−2 W/m2 100 dB 1010

Front rows of a rock concert 10−1 W/m2 110 dB 1011

Threshold of pain 101 W/m2 130 dB 1013

Military jet takeoff 102 W/m2 140 dB 1014

Instant perforation of eardrum 104 W/m2 160 dB 1016

Common sounds with estimates of intensity and decibel level

22
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<http://www.glenbrook.k12.il.us/gbssci/Phys/Class/sound/u11l2b.html>

1. This table is based on the Web page
http://www.glenbrook.k12.il.us/gbssci/Phys/Class/sound/u11l2b.html .

2. The units of sound intensity  (I)  here are  W / m2  =  watts / meter2 .
3. (Decibel intensity level)  =  10 log10(I / ITOH)  where

ITOH  =  10–12 W/m2  =  (sound intensity at the human threshold of hearing).
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Power, intensity, and distance from a sound source
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1. For the 6-sided equation in item #1 stating  20 log10 (r2/r1)  =  …  =  IdB1 – IdB2 ,
•  the 1st “=” applies the 3rd theorem at the bottom of slide #17,
•  the 2nd “=” applies the equation  I1/I2 = (r2/r1)2  derived on this slide’s line just
above this equation,
•  the 3rd “=”  applies simple algebra,
•  the 4th “=” applies the 2nd theorem on slide #17,  and
•  the 5th “=” applies the definition of expressing sound intensity in decibels from
item #7 at the bottom of the slide #18.

2. Based on the table in the previous slide, the example in item #2 of this slide
assumes the estimate that the decibel intensity of sound is  IdB1 = 110 dB  at a front
row distance of  r1 = 15 feet  from the source of the music (such as public address
loudspeakers).
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The frequency of any note (e.g., High C = C5) is twice the frequency of the
note one octave below it (e.g., Middle C = C4),  so  fC5 = 2  fC4 .

The ratio of the frequency of any note divided by the frequency of the note
one semitone below it (corresponding to the next lower piano key) is always

the same for the equal-tempered scale.  Denote that ratio by  r ,  where

Frequency ratio of semitones for the equal-tempered scale

So,

Therefore,   r 
12  =  2 ,   so   r  =  21/12  ≈  1.059463094 ,   and hence

raising a note by one semitone increases its frequency by 5.9463094 % .

Names of musical notes on a piano keyboard

1. The Audacity program identifies frequencies by the names of the nearest musical
notes (such as A4 for 440 Hz).

2. As shown on this slide, the piano keyboard includes 88 notes that cover more than
7 octaves.  The naming pattern shown above can be extended to notes lower or
higher than those a piano can play.

3. The multisided equation
2 fC4  =  fC5  =  r fB4  =  r2 fA#4  = r3 fA4  = r4 fG4#  =  …  =  r11 fC4#  =  r12 fC4
can be derived as follows.
•  The 1st “=” states that note C5 is one octave above note C4 as explained
previously on this slide.
•  The 2nd “=” follows by multiplying the 1st and 2nd sides the previous equation  (r
= fC5 / fB4)  by  fB4 .
•  The 3rd “=” follows by multiplying the 1st and 3rd sides the previous equation  (r
= fB4 / fA4#)  by  r fA4# .
•  The 4th “=” follows by multiplying the 1st and 4th sides the previous equation  (r
= fA4# / fA4)  by  r2 fA4 .
•  The 5th “=” follows by multiplying the 1st and 5th sides the previous equation  (r
= fA4 / fG4#)  by  r3 fG4# .
•  Continue applying this iterative method 8 more times (explicitly including the 6
sides represented by “…” in each equation), finally yielding the last “=” in this
multisided equation which states  r11 fC#4 = r12 fC4 .
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1. The frequency values in the equal-tempered scale commonly assume that the frequency of the note  A4  is
exactly  fA4 = 440 Hz  (in units of  Hz  =  Hertz  =  cycles / second).

2. The note  A  in any octave corresponds to note index  n = 9  because it is 9 semitones above the note  C  at
the bottom of the octave.  The note  A4  has the octave index  u = 4 .

3. The speed  v  of a wave that has wavelength  λ  and frequency  f  is

v  = λ  f  ,   typically measured in units of

4. Wavelength values in the table on the next slide assume the speed of sound is
v  =  344 meters/second  =  34,400 cm/s,    which is approximate for dry air at 70 degrees Fahrenheit.

5. The note  C0  (which corresponds to note index  n = 0  and octave index  u = 0)  is
(12 semitones/octave) (4 octaves)  +  (9 semitones)  =  57  semitones below the reference note  A4.

6. In general, the number of semitones from the note  A4  to the note with any note index  n  and any octave
index  u  is    12 (u – 4) + (n – 9)  =  n – 57 + 12 u ,    so the number of octaves (with 12 semitone intervals
per octave) from note  A4  of frequency  fA4 = 440 Hz  to the note with those indexes is    (n – 57) /12  +  u .

7. For any note index  n  and any octave index  u ,  the frequency  f  and the wavelength  λ  of the
corresponding note are related by
(344 m/s) / λ    ≈    v / λ    =    f    =    fA4  2

(n – 57)/12 + u    ≈   (16.35159783 Hz)  2(n/12 + u) ,     so that
λ   =   v / f   ≈  (34,400 cm/s) / ((440 / s)  2(n – 57)/12 + u)   ≈   (2103.769941 cm)  2–

 
(n/12 + u) .

8. The lowest (leftmost) note on a piano keyboard is  A0 ,  which corresponds to
note index  nA0 = 9 ,    octave  uA0 = 0 ,    frequency  fA0 = 27.50 Hz ,       and   wavelength  λA0 ≈ 1250 cm .

9. The highest (rightmost) note on a piano keyboard is  C8 ,  which corresponds to
note index  nC8 = 0 ,    octave  uC8 = 8 ,    frequency  fC8 ≈ 4186.01 Hz ,   and   wavelength  λC8 ≈  8.22 cm .

10. Based on the previous two sentences, the number of keys on a piano is
12 (uC8 – uA0) + nC8 – nA0 + 1   =   12 (8 – 0) + 0 – 9 + 1   =   88  keys,    covering more than 7 octaves .
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Compute frequencies & wavelengths of equal-tempered notes
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n Note Octave u=0 Octave u=1 Octave u=2 Octave u=3 Octave u=4 Octave u=5 Octave u=6 Octave u=7

0 C 16.35 Hz
2100 cm

32.70 Hz
1050 cm

65.41 Hz
526 cm

130.81 Hz
263 cm

261.63 Hz
131 cm

523.25 Hz
65.7 cm

1046.50 Hz
32.9 cm

2093.00 Hz
16.4 cm

1 C#

= Db
17.32 Hz
1990 cm

34.65 Hz
993 cm

69.30 Hz
496 cm

138.59 Hz
248 cm

277.18 Hz
124 cm

554.37 Hz
62.1 cm

1108.73 Hz
31.0 cm

2217.46 Hz
15.5 cm

2 D 18.35 Hz
1870 cm

36.71 Hz
937 cm

73.42 Hz
469 cm

146.83 Hz
234 cm

293.66 Hz
117 cm

587.33Hz
58.6 cm

1174.66 Hz
29.3 cm

2349.32 Hz
14.6 cm

3 D#

= Eb
19.45 Hz
1770 cm

38.89 Hz
885 cm

77.78 Hz
442 cm

155.56 Hz
221 cm

311.13 Hz
111 cm

622.25 Hz
55.3 cm

1244.51 Hz
27.6 cm

2489.02 Hz
13.8 cm

4 E 20.60 Hz
1670 cm

41.20 Hz
835 cm

82.41 Hz
417 cm

164.81 Hz
209 cm

329.63 Hz
104 cm

659.26 Hz
52.2 cm

1318.51 Hz
26.1 cm

2637.02 Hz
13.0 cm

5 F 21.83 Hz
1580 cm

43.65 Hz
788 cm

87.31 Hz
394 cm

174.61 Hz
197 cm

349.23 Hz
98.5 cm

698.46 Hz
49.3 cm

1396.91 Hz
24.6 cm

2793.83 Hz
12.3 cm

6 F#

= Gb
23.12 Hz
1490 cm

46.25 Hz
744 cm

92.50 Hz
372 cm

185.00 Hz
186 cm

369.99 Hz
93.0 cm

739.99 Hz
46.5 cm

1479.98 Hz
23.2 cm

2959.96 Hz
11.6 cm

7 G 24.50 Hz
1400 cm

49.00 Hz
702 cm

98.00 Hz
351 cm

196.00 Hz
176 cm

392.00 Hz
87.8 cm

783.99 Hz
43.9 cm

1567.98 Hz
21.9 cm

3135.96 Hz
11.0 cm

8 G#

= Ab
25.96 Hz
1330 cm

51.91 Hz
663 cm

103.83 Hz
331 cm

207.65 Hz
166 cm

415.30 Hz
82.8 cm

830.61 Hz
41.4 cm

1661.22 Hz
20.7 cm

3322.44 Hz
10.4 cm

9 A 27.50 Hz
1250 cm

55.00 Hz
625 cm

110.00 Hz
313 cm

220.00 Hz
156 cm

440.00 Hz
78.2 cm

880.00 Hz
39.1 cm

1760.00 Hz
19.5 cm

3520.00 Hz
9.77 cm

10 A#

= Bb
29.14 Hz
1180 cm

58.27 Hz
590 cm

116.54 Hz
295 cm

233.08 Hz
148 cm

466.16 Hz
73.8 cm

932.33Hz
36.9 cm

1864.66 Hz
18.4 cm

3729.31 Hz
9.22 cm

11 B 30.87 Hz
1110 cm

61.74 Hz
557 cm

123.47 Hz
279 cm

246.94 Hz
139 cm

493.88 Hz
69.7 cm

987.77 Hz
34.8 cm

1975.53 Hz
17.4 cm

3951.07 Hz
8.71 cm

Frequencies and wavelengths for the equal-tempered scale

1. The frequency values in this table use the common assumption that the frequency
of the note  A4  is exactly  fA4 = 440 Hertz.   The note  A4  corresponds to note
index  n = 9  and  octave index  u = 4 .

2. The wavelength values in this table also assume that the speed of sound is  v = 344
meters/second = 34,400 cm/s,  which is approximately true in dry air at 70 degrees
Fahrenheit.

3. The note  C0  (which corresponds to indexes  n = 0  and  u = 0)  is   12 (4) + 9  =
57  semitones below the reference note  A4.

4. The note  C4  is called “middle C” (the first C to the left of the center of a piano
keyboard);  note  C5  is called “high C” (the first C to the right of the center of a
piano keyboard).

5. In general, the number of semitones from the note  A4  to the note with any note
index  n  and any octave index  u  is
12 (u – 4) + (n – 9)  =  n – 57 + 12 u ,
so the number of 12-semitone octaves from note  A4  to the note with those
indexes is
(n – 57 + 12 u) / 12  =  (n – 57)/12 + u .

6. For any note index  n  and any octave index  u,  the frequency  f  and the
wavelength  λ  of the corresponding note are related by
(344 m/s) / λ  ≈  v / λ  =  f  =  fA4  2((n – 57)/12 + u)  ≈  (16.35159783 Hz)  2(n/12 + u),
so that
λ  =  v / f  ≈  ((34,400 cm/s) / ((440 / s)  2((n – 57)/12 + u))  ≈  (2103.769941 cm)  2(n/12 +
u) .

7. The lowest (leftmost) note on a piano keyboard is  A0 ,  which corresponds to
n = 9, u = 0,  f = 27.50 Hz,  and  λ ≈ 1250 cm.

8. The highest (rightmost) note on a piano keyboard is  C8 ,  which corresponds to
n = 0, u = 8,  f ≈ 4186.01 Hz,  and  λ ≈ 8.22 cm.

9. By items #8 and #7 just above, the number of keys on a piano is
  12 (uC8 – uA0) + nC8 – nA0 + 1  =  12 (8 – 0) + 0 – 9 + 1  =  88 .
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Superposition (that is, adding) of waves can form beats

Beats are the periodic fluctuations heard in the intensity of a sound when two sound waves of very similar
frequencies interfere with one another.  In the figure, the red sine wave at the top is added to the slightly
lower frequency blue sine wave in the middle, forming the green beating waveform at the bottom.

C.I. = Constructive Interference:  When two compressions come together, they combine to make a region
of very compressed air (very high pressure).  When two rarefactions come together, they combine to make
a region of very spread-out air (very low pressure).  Both of these are examples of constructive
interference.  A location of continually constructive interference is called an antinode.

D.I. = Destructive Interference:  When a compression from one wave meets a rarefaction from another
wave with equal amplitude, they cancel out, so that there’s no disturbance in air pressure at that point.  A
location of continually destructive interference is called a node.

The  beat frequency  (that is, the rate in  repetitions/second  at which the loud beats repeat)  is equal
to the difference in frequency of the two notes that interfere to produce the beats.

1. If you listen to two tones that have the same intensity but have two very slightly
different frequencies, you hear an oscillating pattern of loud sound and then
silence, loud sound and then silence…called beats. The frequency of that
oscillation (how often the beats occur) is called the beat frequency.

2. For example, if two sound waves with frequencies of 300 Hz and 302 Hz are heard
simultaneously, a beat frequency of  302 Hz – 300 Hz  =  2 Hz  will be detected;
that is, the resulting waveform will reach its maximum intensity 2 times per
second.

3. In the plots shown on this slide, if the red wave 1 has the frequency 110 Hz (which
will contain exactly 11 cycles in 0.1 second) then the blue wave 2 has the
frequency 100 Hz (which will contain exactly 10 cycles in that same 0.1 second).
The resulting beat frequency of the green sum of those waves is then  110 Hz –
100 Hz  =  10 Hz,  which reaches its maximum intensity 10 times per second,
which means it repeats after  1 / (10 cycles/second) = 0.1 seconds/cycle .

4. A piano tuner can use beats to tune a piano string.  She will pluck the string and
tap a tuning fork for the proper note at the same time.  If the two sound sources --
the piano string and the tuning fork -- produce detectable beats then their
frequencies are not identical.  She will then adjust the tension of the piano string
and repeat the process until the beats can no longer be heard because the time
between beats gets too long.
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Two sources of sound with the same frequency interfere

Animated interference pattern formed by two sound wave sources having the same wavelengths and frequencies

<http://www.glenbrook.k12.il.us/gbssci/phys/mmedia/waves/ipl.html>

The number of antinodal lines in front of the two sources is about twice the number
of wavelengths between the sources.

Java applets for interference:

http://webphysics.davidson.edu/Applets/Ripple/Ripple_JS.html

http://id.mind.net/~zona/mstm/physics/waves/interference/twoSource/TwoSourceInterference1.html

1. The waveforms are like ripples caused on the surface of a pond when it is
repeatedly tapped (at the same rate) by two sources  s1  and  s2.   The circular
ripples expanding from source  s1  interfere with (that is, add to the instantaneous
height of) the circular ripples expanding from source  s2  at each location and time
instant.  This produces “antinodal lines” with high amplitude oscillation where the
interference is constructive, and it produces “nodal lines” where destructive
interference causes the ripples to continuously cancel each other.

2. This animation shows that the number of antinodal lines and nodal lines decreases
as the wavelength of both sets of ripples increases (that is, as their frequency
decreases) for the same spacing between the two sources (that is, for a constant
“slit width”).
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1. Any real function of continuous time equals the sum of a possibly infinite number of sine waves of
various frequencies.  The (continuous) Fourier transform computes the amplitude and initial phase
angle for those sine waves at each frequency, where the frequencies may need to be infinitesimally
closely spaced for some functions.  It was named after Jean Baptist Joseph Fourier, 1768 – 1830.

2. In particular, if the function of continuous time  g(t)  is periodic with a repetition rate of  fP
(typically in units of cycles/second = Hertz = Hz)  so its period is  1/fP  (seconds/cycle),  which
means   g(t)  =  g(t + u / fP)   for all times  t  and for all integers   u  =  0, ±1, ±2, ±3, …,   then that
function equals the sum of sine waves (called a Fourier series) whose frequencies are only integer
multiples of the fundamental frequency  fP ,  where  m fP  is called the  mth  harmonic frequency for
any positive integer   m = 1, 2, 3, … .

3. If an analog to digital converter (ADC) digitizes an even number  N  of samples of the function of
time  g(t)  at a uniform sampling frequency of  Fs  (samples/second)  spanning a duration of  N / Fs
(seconds),  then each of those samples  (at times  tk = k / Fs  for each sample index   k = 0, 1, 2, …,
N–1)  equals a sum of  N / 2 + 1 sine waves at uniformly spaced frequencies  fn = n Fs / N  for
frequency indexes  n  =  0, 1, 2, …, N / 2 .   That is,
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where the nonnegative amplitudes  an ≥ 0  and the phase angles  θn  of those  N / 2 + 1  sine waves can
be computed from the  N  given samples by the fast Fourier transform (FFT) algorithm.

Mathematical basis of spectrum analysis and the FFT

1. The definition of the discrete Fourier transform will be explained in these notes for this slide, although this involves some
mathematical concepts (like a few trigonometric identities, complex number theory, and Euler’s formula) that are beyond
the level assumed by the rest of this presentation.

2. The implicit assumption is made throughout this slide that the function  g(t)  is “purely real” in the sense of complex number
theory;  that is, the imaginary part of  g(t)  is assumed to equal zero for all time  –∞ < t < ∞ .   This assumption gives the
Fourier transforms “complex conjugate symmetry”.  In terms of data sampled by an ADC at a uniform rate of  Fs  (measured
in Hz = samples/second),  complex conjugate symmetry means that   G(Fs –  fn)  =  G(fN–n)  =  conjugate(G(fn))   for all   n  =
0, 1, 2, …, N – 1,   where  G(fn) = G(n Fs / N)   is the FFT complex spectrum of time-domain real samples  g(tk) = g(k / Fs)
as defined below in the notes for this slide.

3. The requirement that the total number of samples  N  should be an even integer is also assumed for the particular
representation shown on this slide with the sum of only  N/2 + 1  sines.

4. For any frequency index  n  =  0, 1, 2, 3, …, N  – 1  corresponding to the frequency  fn = n Fs / N ,  define
cn  =  (1 / N)  (sum of   g(k / Fs)  cos(2 π  k n / N)  for all  k = 0, 1, 2, …, N – 1)     and
dn  =  (1 / N)  (sum of   g(k / Fs)  sin(2 π  k n / N)  for all  k = 0, 1, 2, …, N – 1) .     Also define
j  =  (one of the two imaginary unit constants of complex number theory, such that  j 2 = –1).

5. The discrete Fourier transform (the DFT, which can be computed by the much more efficient FFT algorithm) at any discrete
frequency  fn  =  n Fs / N   (measured in Hz)  is
G(fn)  =  G(n Fs / N)  =  cn + j dn  =  (1 / N) (sum of   g(k / Fs)  exp(j 2 π  k n / N)   for all  k = 0, 1, 2, …, N – 1) ,
using Euler’s formula that   e(j x)  =  exp(j x)  =  cos(x) + j sin(x)   for any real number  x  where  e ≈ 2.718281828495  is the
base of natural (Naperian) logarithms.

6. Although that DFT function  G(fn)  can be evaluated for any integer  n ,  those values of the complex spectrum repeat with a
period of  N  frequency-domain samples;  that is,  G(fn) = G(fn+N)  for any integer  n .

7. Let  µ  =  G(0)  =  c0  =  (the average of all  N  digitized samples)
            =  (1 / N)  (the sum of all  N  samples  g(k/Fs)  for  k = 0, 1, 2, …, N – 1) .
If   µ ≥ 0   then   a0 = µ ≥ 0   and   θ0 = π / 2,   so the first summation term  (at frequency  f0 = 0 Hertz)  is   a0 sin θ0 = µ ;
otherwise,
if   µ < 0   then   a0 = –µ > 0   and   θ0 = –π / 2,   so the first summation term  (at frequency  f0 = 0 Hertz)  is again   a0 sin θ0
= µ .

8. Corresponding to  (half the sampling frequency)  =  Fs / 2  =  f(N / 2)  =  (n Fs / N  where  n = N / 2),
let  h  =  G(Fs / 2)  =  c(N / 2)  =  (the sum of  (–1)k g(k/Fs)  for all  k = 0, 1, 2, …, N – 1) .
If   h ≥ 0   then   aN / 2 = h ≥ 0   and   θN / 2 = π / 2,   so the last summation term  (at frequency  fN / 2 = Fs / 2)  is   aN / 2 sin(π k +
θN / 2) = (–1)k h ;   otherwise,
if   h < 0   then   aN / 2 = –h > 0   and   θN / 2 = –π / 2,   so the last summation term  (at frequency fN / 2 = Fs / 2)  is again   aN / 2
sin(π k + θN / 2) = (–1)k h .

9. For any  n = 1, 2, 3, …, N / 2 – 1,  the amplitude of the sine term at frequency  n Fs / N   is
an   =  2  | G(fn) |  =  2  sqrt(cn

2 + dn
2)  ≥ 0 ,

and the phase angle  θn  of that sine term  an  sin(2 π  k n / N + θn)  is
θn   =  (arg(G(fn))  +  π / 2) mod (2 π)  =  (atan2(dn ,  cn)  +  π / 2) mod (2 π) =  atan2(cn ,  dn) mod (2 π) ,      so
sin(θn)  =  2 cn / an     and     cos(θn)  =  2 dn / an ,    where
arg(z) = z / |z|  is the argument function of any nonzero complex number  z ,   where
atan2(y, x)  =  β   is the arctangent function such that   sin(β) = y / r  and  cos(β) = x / r  assuming  r = sqrt(x2 + y2), where
x mod y  =  x  –  y  floor(x / y)    is the “modulo” function which calculates the remainder of any real  x  divided by any
nonzero real  y ,  and where
floor(x)  =  (the greatest integer that is ≤ x) .
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Graphical example and demos of spectrum analysis

Sum of 3 harmonics  (based on  http://zone.ni.com/cms/images/devzone/tut/a/8c34be30580.gif)

Fourier series and waves animated applet:              http://www.kettering.edu/~drussell/Demos/Fourier/Fourier.html

Applet to adjust amplitudes of first 8 harmonics:    http://www.earlevel.com/Digital%20Audio/harmonigraf.html

Nice demo to listen to Fourier series harmonics:     http://www.jhu.edu/~signals/listen-new/listen-newindex.htm

1. This graphical example shows that adding the green  (“f1”),  yellow (“2 f1”),  and
red  (“3 f1”)  sine waves at each instant of time  t  produces the white (“sum”)
waveform.  The Fourier transform (FFT) of the sum waveform calculates the
frequencies, amplitudes, and initial phase angles of the sine waves that will add up
to that sum waveform.

2. Because the 3 sine waves shown here have harmonic frequencies which are the
first 3 multiples of the fundamental frequency  f1 ,  the sum waveform must repeat
with a period of  1 / f1  (in seconds).

3. The three Web links at the bottom of this slide help to illustrate the FTT.  The last
two are interactive, and the last one demonstrates the effect that changing the FFT
spectrum has on the sound of its corresponding time-domain waveform.
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<http://www.glenbrook.k12.il.us/gbssci/phys/Class/sound/u11l2d.html>

The hammer (malleaus), anvil
(incus), and stirrup (stapes)

bones and coiled cochlea are
unique to mammals.

<http://biology.clc.uc.edu/fankha
user/Labs/Anatomy_&_Physiolog
y/A&P202/Special_Senses/Histol
ogy_Ear.htm>

A traveling wave in the liquid-
filled cochlea causes thousands
of tiny, frequency-sensitive hair

cells (cilia) to vibrate, which
sends electrical impulses along

the auditory nerve corresponding
to the hairs that are moving.

Higher amplitude sounds at any
particular pitch produce more

rapidly repeating nerve impulses
from the corresponding hair.

(pi nna)

The tiniest hair cells are near the entrance of the cochlea and are sensitive to the
highest frequencies of sound (up to about 20 KHz).  Somewhat larger hair cells are

near the apex of the cochlea and respond to low frequencies (down to about 20 Hz).

Anatomy of the human ear

1. The repetition rates of electrical impulses sent along the auditory nerve bundle to
the brain convey information about the amplitudes of sounds at each of thousands
of frequencies from about 20 Hz to about  20,000 Hz = 20 KHz.

2. Essentially, the frequency and magnitude information that could be computed by
an FFT is sent to the brain, but the phase angle information is discarded as being
irrelevant for the brain to discern information from the sound.

3. The fluid-filled “semicircular canals” in the inner ear above entrance to the
cochlea provide a person’s sense of balance.

4. The Eustachian tube connects to the throat to allow air pressure to be balanced on
both sides of the eardrum while swallowing.

5. The outer ear flap on the side of the head is also called the pinna or auricle.  It
modifies the volume of sounds from in front or behind a person to help distinguish
the direction the sound is coming from.  The tiny time delay (less than about
0.0005 second = 500 µs) between when a sound arrives at a person’s left and right
ears also helps the brain discern the direction the sound is coming from.
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<http://cobweb.ecn.purdue.edu/~ee649/notes/figures/vocal_apparatus.gif>

Anatomy of the human vocal tract

1. The “larynx” is also called the “voicebox” and contains the vocal cords (also
called vocal folds).

2. When muscles pull on the vocal cords putting them in tension, they are caused to
vibrate by air pressure rising from the lungs through the trachea (airway),
producing periodic pulses of air that resonate through the upper parts of the vocal
tract including the upper throat, mouth, and nasal cavity.  When a person sings,
increasing the pull of the muscles that put vocal cords in tension makes them
vibrate faster and produces a higher pitch.

3. The pharynx located just above the larynx splits the trachea (i.e., the airway or
wind pipe to the lungs) and the esophagus (i.e., the food pipe to the stomach).
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English phonemes (elemental sounds)

ExampleNotationExampleNotationExampleNotation

birder

toiloiton∧theuh

shoutaucooloohadae

mightaiputUheade

takeeicallawhitI

toneoufatherahheatee

Diphthong vowels
(changing sound)

Pure vowels
(unchanging sound)

b mw(p)Labial  (lips)

(h)Glottal  (glottis in back)

ngg(k)Velar (soft back roof)

zh(sh)Palatal  (hard front roof)

nrlyz(s)d(t)Alveolar  (gums)

th(θ)Dental  (teeth)

v(f)Labio-dental  (lips-teeth)

Nasal
Liquids

(“l” = lateral)
Semi-vowelFricativePlosive

Manner of articulating the consonant;  (unvoiced) or voiced
Place of articulating the

consonant

1. Speech recognition and speech synthesis are very important applications of
acoustic signal processing.  Speech recognition involves programming a computer
to determine what words are being spoken based on digitized samples of an
acoustic signal.  Speech synthesis involves programming a computer to generate
spoken words on a loudspeaker or earphone based on the text of the message to be
spoken, which is especially helpful for people who are sight-impaired.

2. In order to discuss these applications, it is first necessary to understand that
sentences consist of words, which consist of syllables, which consist of elemental
sounds called phonemes.  The 3 tables on this slide show the phonemes used to
speak English.  Other languages may use different phonemes.

3. All vowel phonemes and some consonant phonemes are “voiced”;  that is, they are
produced while the vocal cords vibrate to emit pulses of air which resonate
through the upper vocal tract.  Some consonant phonemes are “unvoiced”;  that is,
they are produced by blowing air past relaxed vocal cords that do not vibrate
significantly.  These tables ignore the fact that all whispered phonemes are
unvoiced.

4. Vowels are classified as “pure” if their spectral content (that is, power at various
frequencies) remains essentially constant as they are spoken, or else vowels are
classified as “diphthongs” if their spectral content changes while being spoken.

5. The bottom table shows how consonant phonemes can be classified by whether
they are unvoiced or voiced, by the way they are produced (such as “plosives” that
suddenly release air, “fricatives” that force air through a constricted gap, or
“nasal” phonemes that expel air through the nose while the mouth is closed), and
by where in the vocal tract they are produced.
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Phonetic speech mouth, formants, wave, and spectrum

1. The left and right figures on this slide are both based on the book  Speech Synthesis: An Experiment
in Electronic Speech Production  by Cecil H. Coker, Peter B. Denes, and Elliot N. Pinson, Bell
Telephone Laboratories, © 1963.

2. The mouth and resonance spectra on the left side of this slide are from page 66 of that book.
3. The top time-domain waveform and spectrum on the right side of this slide are slightly edited from

Fig. 4.18 (b) on page 68 of that book.
4. The lower two time-domain waveforms and spectra on the right side of this slide are slightly edited

from Fig. 4.17 (a) and (b) on page 67 of that book.
5. The shape of the vocal tract for the phoneme “I” (as in “hit”) shown at the upper left has one

formant (or resonance) with high magnitude at low frequency, plus two formants with lower
magnitudes at higher frequencies.

6. The phoneme “aw” (as in “call”) shown at the middle left has two formants with high magnitude
and low frequencies, plus one formant with lower magnitude at higher frequency.

7. The phoneme “oo” (as in “cool”) shown at the bottom left has three formants whose magnitudes
decrease as their frequencies increase.

8. Each of the 3 plots in the 3rd column shows sound pressure versus time for about 24 milliseconds.
Therefore, the top 2 plots each show the response of the vocal tract to about  (0.024 s) (90 pulses/s)
≈ 2 pulses  of the vocal cords, and the bottom plot shows the response to about  (0.024 s) (150
pulses/s) ≈ 4 pulses  of the vocal cords.

9. In the spectral plots at the far right column, the vertical lines under the formant curves of the top
and middle plots are spaced 90 Hz apart, while the vertical lines of the bottom plot are spaced 150
Hz apart.  The 3 formants for “uh” in the top spectral plot (for the phoneme “uh” as in “the”) have
greater magnitude at higher frequencies compared with the 3 formants in the middle and bottom
spectral plots (for the phoneme “ah” as in “father”).
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Phonetic speech recognition and synthesis

1. The left and right figures on this slide are both based on the book  Speech
Synthesis: An Experiment in Electronic Speech Production  by Cecil H. Coker,
Peter B. Denes, and Elliot N. Pinson, Bell Telephone Laboratories, © 1963.

2. The labeling of the graph on the left side of this slide showing clustering of the
first and second formant frequencies for a variety of vowels is slightly edited from
page 92 of that book.

3. The labeling of the spectrograms on the right side of this slide is slightly edited
from page 98 of that book.  The 3 spectrograms in the top row show that the
magnitude (shown by the darkness of the spectrogram signal) stays essentially
constant with time for each of the 3 pure vowels “ee” as in “heat”, “ae” as in
“had”, and “ah” as in “father”.  In contrast, the 3 spectrograms in the middle row
show that the magnitudes change considerably (increasing or decreasing the
magnitudes at various frequencies) with time as each of the 3 diphthong vowels
“ai” as in “might”, “au” as in “shout”, and “oi” as in “toil” is pronounced).  The 3
spectrograms in the bottom row show how phonemes are combined into words,
including the essentially uniform excitation of a broad range of frequencies (that
is, “broadband noise”) for the unvoiced fricative consonant “s” in “seal”.


